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Abstract
In this paper, we review the results of transport simulations that we have done in recent years, of
quantum point contacts (QPCs) which incorporate spin-density-functional theory. Besides the
usual plateaus at integer multiples of G0 = (2e2/h) our calculations yield the type of ∼0.7G0

features that have now become familiar in experiment, as well as anomalies at other non-integer
values. These features appear to be correlated with the formation of an energy barrier structure
within the QPC that can be very strongly spin dependent. In particular, these can be strong
enough that there are circumstances where two spin-down modes may pass through the QPC
before any current from the other spin orientation is allowed through. The barriers can be tuned
to produce different spin filtering effects and can lead to the formation of a local magnetic
moment in the QPC region, which however is only weakly confined in our case. We can also
account for the absence of plateaus at higher integer values of G0.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum point contacts (QPCs) can be formed in semicon-
ductor heterostructures by depositing a pair of metal gates.
Biasing the gates creates a quasi-1D channel (i.e. a wire, or
a QPC for very short channels) which separates the 2DEG
(two-dimensional electron gas) that exists in the heterostruc-
ture into source and drain regions and through which current
can flow. The conductance for such structures has been found
experimentally to be quantized with plateaus at integer mul-
tiples of G0 = (2e2/h) as a function of gate voltage [1, 2].
These results can be explained within a single electron picture
with the conductance being given by the number of modes that
can propagate through the QPC [3]. More recent experiments
however have found additional non-integer plateaus, in partic-
ular a ∼0.7G0 conductance anomaly that has been observed
in QPCs [4–8]. There is some disagreement about the theo-
retical explanation for this feature [9–13], but the consensus is
that electron–electron interactions must be included to account
for such effects, which the authors cited above have typically
done be incorporating spin-density-functional theory (SDFT)
into the transport calculations.

In this paper, we present the results of our own transport
calculations using SDFT performed over the last few years,

much of which has been presented previously elsewhere [14].
Besides being able to obtain ∼0.7G0 anomalies similar to
experiment, we find that these features can be correlated with
the formation of a spin-dependent energy barrier structure.
With the QPC we studied, we found that these can be
particularly strong, and there are instances where two modes
of spin-down electrons can be almost fully transmitted through
the channel before spin-up electrons are allowed through.
These barriers rise and fall as a function of the local density
and by varying it, the ∼0.7G0 anomaly can be made to evolve
into fully formed plateau at G0, and additional features can be
similarly made more or less prominent. In particular, we can
also account for additional experimentally observed features
such as anomalies at ∼0.25G0 [5, 7, 15] and ‘missing’ plateaus
at higher conductances [15, 16]. Our calculations also show
the formation of a local magnetic moment in the QPC region
as a result of the spin-dependent barrier structure. Recent
experiments and supporting theoretical work on coupled QPCs
have provided evidence that, not only do such moments
exist, they can actually be read out electrically [17–21].
Importantly, we find that these moments are only weakly
confined by the spin-dependent barrier structure (it primarily
blocks transmission rather than provides confinement) and
cannot be associated with a truly bound state.
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Figure 1. On the left, the split gates that form the model QPC. On
the right, the contours of the Timp model confining potential at the
level of the 2DEG.

2. Theoretical model

We model a QPC formed by split gates as shown in the left
panel of figure 1. As a simple starting point, for the initial 2D
confining potential generated by these gates, we have used the
model potential given by Timp [22]:
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uv√
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)

]
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Here l and w are the lithographic width (350 nm) and
gap (140 nm) between the electrodes, respectively, and Vg is
the applied gate voltage, and the vertical distance between the
2DEG and the gate, zo, has been taken to be 70 nm. The
right panel shows the contours of potential that arise for a
Vg = −0.55 V in a domain at the very center of the QPC. It is
over this domain, which is actually smaller than the assumed
lithographic dimensions of the QPC, that the simulations are
performed. We have found it is unnecessary to go further out
from the center as the conductance we obtain varies little after
more than about five propagating modes are allowed at the
outer boundaries of the simulation region.

The potential experienced by the electrons in the QPC is
modified when self-consistent effects are explicitly taken into
account within that region. Using an advanced Kohn–Sham
local spin-density functional theory [23] to account for these
interactions, the total potential for spin σ becomes:

V σ
tot(x, y) = Vconf + VH + V σ

exch + V σ
cor. (3)
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Figure 2. A QPC potential placed inside a waveguide for the
purposes of calculation. The grid represents the underlying
finite-difference mesh on which the calculations are performed.

where VH is the Hartree potential, V σ
cor is the correlation

potential. For these, we have used the expression derived
by Tanatar and Ceperly [24]. The exchange potential V σ

exch
we use is that derived by Stern [25]. It should be noted
that the local SDFT approximation has its limitations, in
particular, it does not yield the proper two-particle correlations
that one would obtain from exact diagonalization. However,
while an approximation, the densities obtained within the
approximation mimics what one would obtain from the exact
wavefunction, thus at least partially accounting for the real
correlations [26]. Good agreement between SDFT and exact
diagonalization results has been obtained in the cases of
quantum dots, wires and rings (see [26] for a review) and
has been used by other theoretical groups studying the QPC
problem, as noted above.

Since there is only strong confinement in one direction,
instead of a full two-dimensional treatment of the problem,
our approach was to break the QPC into a series of one-
dimensional slices perpendicular to the x axis, and solve
for the self-consistent potential of each slice individually
using a method analogous to that originally developed for
quantum wires [27, 28]. Figure 2 shows the grid over which
we performed such calculations. Following Berggren and
Yakimenko [10], a weak Zeeman term (gμB Bσ ∼ 10−6 eV) is
included in the first few iterations of each self-consistent loop
to break the initial spin degeneracy. One quantity of particular
importance for this calculation is the 1D electron density, n1D.
We begin the calculation by setting it at the left boundary of the
simulation domain. Working within the usual effective mass,
m∗, approximation (this is generally sufficient since we always
near the bottom of the conduction band), this density is related
to the Fermi energy, EF, through

n1D =
∑
σ,m

(
2m∗(EF − Eσ

m)/h̄
)1/2

/π, (4)

where Eσ
m are the energies of the modes and the sum is

restricted over those that propagate. Since we are considering
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a GaAs 2DEG, m∗ = 0.067. This parameter acts simply as a
scaling parameter in our calculation.

Given n1D, one can determine EF which in turn can
be converted to a 2D density. Thus, one can chooses n1D

to yield reasonable values that agree with typical measured
experimental values of the latter quantity. With regards to
this slice by slice method, the EF at the left boundary is what
used to set the n1D values for the individual slices through the
device.

In keeping with the results for the self-consistent potential,
our conductance calculations are performed on a square finite-
difference lattice with lattice constant a. Lattice position can
be specified by integers i and j . The conductances for the two
spin orientations are computed separately. To lowest order, the
2D Schrödinger equation for electrons of spin σ becomes [29]:

−t (ψσi+1, j + ψσi−1, j + ψσi, j+1 + ψσi, j−1)+ (V σ
i, j + 4t) ψσi, j

= Eσ ψσi, j , where t = h̄2

2m∗a2
, (5)

and V σ
i, j represents the discretized full potential at site i, j and

Eσ is the energy of the electron with spin σ . For convenience,
the QPC is enclosed inside an ideal quantum wire, which
extends outward to ±∞ along the x-axis. This is shown
schematically in figure 2. Given a structure M+1 lattice points
high (with M actual points in the interior being simulated) and
N lattice points across, and using the center of the device as
the zero reference, then i and j are related to actual position
by x = a(i − (M + 1)/2) and y = a( j − N/2).

To calculate the transmission through a device, the modes
are injected from the left side with unit amplitude. Using (5),
one can derive a transfer matrix equation that relates adjacent
slices to achieve this purpose. For a structure N slices long,
one must thus solve the transfer matrix problem:

[
tσ

0

]
= T−1

0 TN TN−1 . . .T1 T0

[
I

rσ

]
, (6)

where tσ is a matrix of spin-dependent transmission amplitudes
of waves exiting from the right part of the structure, and rσ

is the matrix of amplitudes of waves reflected back towards
the left. The inclusion of the unit matrix I ensures that each
mode is being sent in with unit amplitude, while T0 is a matrix
consisting of the modes, both propagating and evanescent,
calculated by solving the transfer matrix eigenvalue problem
in the initial slice of the device. It should be noted that for a
good discrete approximation the kind of parabolic dispersion
one would expect if the modes were calculated analytically,
the lattice constant a should be a small fraction of the Fermi
wavelength (∼0.1 or smaller). Given tσ , one calculate the
spin-dependent conductance Gσ using the Landauer–Buttiker
formula:

Gσ = 2e2

h

∑
m,n

vσn

vσm

∣∣tσm,n∣∣
2

, (7)

where tn,m represents the transmission amplitude of mode
n to mode m, and the summation is only over propagating
modes. Here, vσn is the velocity of the nth mode, which can
be obtained by taking the expectation value of the current

operator. Unfortunately, equation (6) in its present form
is made numerically unstable by the exponentially growing
and decaying contributions of the evanescent modes that
accumulate when the product of transfer matrices is taken.
Usuki et al [29] overcame this difficulty be recasting the
transfer matrix problem in terms of an iterative scheme
resembling a cascade of scattering matrices [30]. The
numerical stability of the Usuki et al method stems from the
fact that the iterative scheme involves products of some of the
original transfer matrices with matrices that are inverted. Thus,
the exponential factors that cause numerical difficulties when
transfer matrices are simply multiplied together end up being
canceled out.

Once the transmission coefficients are obtained, the
electron wavefunction �(i, j, k) at each site, i, j, and incident
mode, k, can be reconstructed using a similar recursive
scheme [29, 31]. Given q propagating modes for a given spin
σ incident from the left, the 2D probability density at x and y
is given by:

nL
σ (x, y) = nL

σ (a(i − (M + 1)/2), a( j − N/2))

=
q∑

k=1

|ψσ (i, j, k)|2. (8)

The superscript, L, is included because this density only
takes into account contributions from electron waves incident
from the left. In a real situation, waves come from both
directions, so that the true 2D density will be the sum over
left and right incident wave contributions:

nσ = nL
σ + nR

σ . (9)

Making the assumptions that there is only a vanishingly
small potential drop and the device is perfectly symmetric,
then these contributions can be taken to be equal, but mirror
reversed about the center of the QPC.

Given that the experimental observations generally have
all been made at very low temperatures, the calculations
shown here have been done zero temperature for the sake of
simplicity. Thus, no inelastic scattering events are incorporated
into the calculation.

3. Simulation results

In figure 3, we present a surface plot of the total conductance
(the sum over the two spin channels) versus Vg and n1D. The
curves used to construct this surface corresponded to a range
of 1.68–2.38 × 106 cm−1 (EF = 12.9–14.0 meV, given Vg =
−0.55 V). For the initial confining potential considered and
the density range chosen, we found that there are no actual
conductance plateaus at 2G0, only points of inflection in the
conductance traces in that region, which shift according to the
density. We also find that some traces show an actual plateau at
∼G0, while others develop a hump that falls somewhat short of
this value, which can even drop below ∼0.5G0 as the density
is varied. Many individual traces also have pairs of features
below ∼G0 and ∼0.5G0, respectively. What follows are some
representative examples.

In the left-hand panel of figure 4, the conduc-
tance is plotted for an illustrative one-dimensional density,
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Figure 3. Surface illustrating the total conductance of a QPC,
calculated as a function of gate voltage and electron density. For the
simulations shown here, we used M = 69 and N = 40.

n1D = 2.01 × 106 cm−1 (EF = 13.5 meV). The contributions
of the spin-up and spin-down channels to the conductance are
also plotted as dashed and dotted lines in the same figure. The
total conductance exhibits a sloped region near ∼0.8G0, rather
than a flat plateau at G0, and there is also a weaker inflection
point near 0.3G0. Such features are similar to those observed
experimentally [4, 5, 7, 15, 16]. From a comparison of the

spin-resolved components of the transmission, it is clear that
the spin-down contribution dominates the conductance, even
up to ∼G0. In fact, the implication in this case is that two spin-
down modes can be fully transmitted through the QPC, before
the first spin-up mode begins to propagate.

Insight into the different transmission characteristics can
by obtained by looking at the self-consistent QPC potentials
seen by the two spins. Three pairs of potentials are shown
as insets in figure 4. In comparison to the bare confining
potential, we see that an additional potential barrier structure
becomes superimposed upon the QPC when self-consistency
is introduced, a structure that depends on whether the spin is
up or down, and which weakens as more modes are allowed to
pass through the QPC.

Since the spin-dependent barriers in figure 4 show
relatively little variation along the y-direction, one can think
of them as essentially quasi-one-dimensional. In the right-
hand panel of figure 4, we adopt this viewpoint and plot
the potentials after averaging them over the y-direction
(〈V (x, y = yo)〉, where yo is the center of the QPC). In case
(a), the spin-dependent potentials are equal at the center of
the QPC. Away from the center, however, they deviate, with
the spin-down potential dropping significantly below that of
spin-up, splitting with the latter and developing ‘shoulders’.
As previously noted in the context of quantum wires [28], this
potential splitting, which can be larger than the level spacing
of the modes, is largely the result of the exchange potential, and
will oscillate as a function of the local density. Consequently,
the effective barrier height (dependent on the potential and
width of the barrier) is lower for spin-down electrons, which
are partially transmitted through the QPC while spin-up modes
are blocked completely. In case (b) of figure 4, the spin-up

Figure 4. Left: QPC conductance for a one-dimensional density, n1D = 2.01 × 106 cm−1 (EF = 13.5 meV). The solid line is the total
conductance variation, while the dashed and dotted lines show the spin-resolved contributions to the conductance. Also shown are the
spin-dependent potential barriers formed in the QPC, at several different gate voltages, with darker shading indicating higher potential. Upper
plots show the spin-down barrier, lower ones the spin-up barrier. Right: variation of the average barrier height as a function of position along
the direction of current flow, for the three gate voltages indicated by arrows in the left-hand panel. The dotted lines are the barrier for
spin-down electrons, the solid line is for spin-up electrons. The potentials for (a) are vertically offset by the indicated energies.
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barrier remains high, but the central portion of the spin-down
barrier has now collapsed. With this collapse, the first spin-
down mode is fully transmitted through the barrier, along with
a significant fraction of a second mode, with the same spin,
yielding the conductance step near 0.8G0. At the same time,
transmission of the spin-up modes remains blocked, so that the
QPC functions as a spin filter. As the gate voltage is gradually
made less negative, the QPC gradually opens and the spin-
resolved barriers eventually collapse upon one another. This
is the situation in case (c) of figure 4, where we see that the
two potentials are essentially identical.

We actually find that the effective one-dimensional
barriers shown in figure 4 to be quite generic features, and
are found in conjunction with every conductance trace used
to construct for figure 3. What varies as n1D is changed is
the relative transparency of these barriers. Whether one sees
well formed plateaus, humps or just points of inflection at
particular gate voltages depends largely on n1D. Moreover,
one type of feature can be made to evolve into another. It
should be noted that spin-and density-dependent barriers have
of course been obtained in numerical studies performed by
other authors [10, 11, 32].

While there is convergence of the spin-up and down
potentials at the less negative gate voltages, it is evident that
the self-consistent potential in case (c) still has the form of an
additional barrier superimposed upon the initial QPC saddle
potential. The presence of this additional barrier prevents the
modes from being cleanly transmitted through the QPC, as a
result of which the conductance curves in figure 4 show only
an inflection near 2G0, rather than a fully formed plateau. Such
behavior has been seen experimentally. A particularly weak
plateau at 2G0 is displayed in Thomas et al for their sample
D [4]. Inflections instead of plateaus were observed by Shailos
et al [15], who used a finger gate to vary the electron density
entering the QPC, which we have done here by hand by varying
n1D in our simulations. More recently, Gunawan et al [16] did
experiments on an AlAs QPC which revealed similar behavior
as shown here: a well formed ∼0.7G0 feature accompanied
by only inflections at integer values of G0. However, in
that case, the two-dimensional electrons occupied two in-plane
valleys with elliptical Fermi contours. The lack of well formed
plateaus (there expected at multiples of 2G0 because of the
contribution of the two valleys) was taken as an indication of a
broken valley degeneracy in the QPC and that it was acting as
a simple ‘valley filter’ device.

Insight into the formation of plateaus or the lack thereof
can be obtained by utilizing an old but still useful model
developed by Büttiker [3]. He considered a QPC expressed
in terms of saddle potential whose curvature was characterized
by two frequencies ωx and ωy :

V (x, y) = V0 − 1
2 m∗ω2

x x2 + 1
2 m∗ω2

y y2. (10)

Here, V0 is the electrostatic potential at the saddle.
Expressed as a sum over modes, n, entering the QPC, the
conductance for this model is given by:

G =
∑

n

1

1 + exp(−π εn)
where

εn = 2

[
E − h̄ωy

(
n + 1

2

)
− V0

]/
h̄ωx . (11)

Figure 5. The conductance obtained using Büttiker’s formula as a
function of normalized energy is plotted for values of ωy/ωx

obtained by fitting a saddle potential to the self-consistent potentials
that were computed at points (b) and (c) in figure 4.

Büttiker found that steps at integer values of G0 occurred
provided that

ωy/ωx � 1, (12)

with the steps becoming progressively flatter the larger this
ratio is. What ωy does is determine the energy separation of the
modes at the QPC (En = h̄ωy(n + 1/2)), while ωx determines
the width of the transition region for the opening of a quantum
channel or mode. According to equation (11), if the transition
region is small compared to the energy separation, then steps
result. We have fitted a saddle potential as described by
equation (10) to the fully self-consistent potentials we obtained
for the spin-down electrons at points (b), where there is a
broad conductance plateau for that spin channel, and (c), where
there is an inflection, in figure 4. Those fits yielded a ratio
ωy/ωx = 0.8 for (b) and ωy/ωx = 1.5 for (c). Figure 5 shows
the results of inputting those fits into equation (11). As one
might expect from the preceding discussion, the ωy/ωx = 1.5
curve has a rounded plateau over the energy range displayed,
while the ωy/ωx = 0.8 curve yields only inflections instead
of real plateaus. Thus, the disappearance of plateaus at less
negative gate voltages in figure 4 can be understood in terms
of the evolution of the shape of the QPC potential. It should
be emphasized that this sort of transition (plateau to inflection
point) in individual gate voltage traces only occurs if self-
consistency is included in the calculation, at least for the first
few modes.

Figure 6 depicts what occurs for a different choice of
density. For this plot of the conductance as a function of Vg,
we have used n1D = 1.96 × 106 cm−1 (EF = 13.4 meV).
Unlike the previous example, there is now a plateau at G0.
Note as well that steps also occur at ∼0.25G0 and ∼0.5G0

in this case. In contrast to figure 4, the ‘shoulders’ shown
by the various potentials are a more prominent here (an
example being marked by asterisks in figure 6). The behavior
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Figure 6. Left: QPC conductance for a one-dimensional density, n1D = 1.96 × 106 cm−1 (EF = 13.4 meV). The solid line is the total
conductance variation, while the dashed and dotted lines show the spin-resolved contributions to the conductance. Also shown are the
spin-dependent potential barriers formed in the QPC, at several different gate voltages. Upper plots show the spin-down barrier, lower ones
the spin-up barrier. Right: variation of the average barrier height as a function of position along the direction of current flow, for the three gate
voltages indicated by arrows in the left-hand panel. The dotted lines are the barrier for spin-down electrons, solid line is for spin-up electrons.
The potentials for (a) and (c) are vertically offset by the indicated energies.

shown here is noteworthy since it would appear to show
a connection between the presence of quasi-plateaus in the
conductance (near 0.25G0 and 0.5G0), and the formation of
a well defined local potential well for one spin species. This
suggests the possibility that our simulations may reveal a local
spin polarization and the formation a local magnetic moment.
As mentioned earlier, recent work has provided evidence
for the electrical readout of such moments, by studying the
characteristics of coupled QPCs [17–21].

In that regard, the ∼0.7 feature has been theoretically
associated with the formation of a magnetic moment for
quite some time. However, there has been debate over
its nature, with two distinct scenarios currently being
explored. One of these ascribes the local moment to
the spontaneous spin polarization of electrons in the one-
dimensional channel [10, 12, 13, 32, 33], while the other
may be described as a Kondo-like scenario [9, 11, 34]. In
the former scenario, the local moment is viewed as having a
ferromagnetic origin, due to the ordering of the electrons spins
in the one-dimensional channel when the exchange energy of
their Coulomb interaction exceeds their kinetic energy. As
such, this magnetic moment is often referred to as static.
The Kondo approach, on the other hand, is based upon the
presence of a dynamic magnetic moment, which originates
from the correlated many-body state that is formed between a
localized electron in the QPC and the reservoirs connected to it.
Although electrons constantly tunnel back and forth between
the QPC and the reservoirs, the equivalence of the number of
spin-up and spin-down electrons visiting the contact is broken,
resulting in a non-zero net spin polarization in the QPC. As
such, this scenario is roughly equivalent to the conventional
Kondo effect for a spin localized on an impurity, or in a
quantum dot [35]. An important issue here is that, while the
Kondo model requires the formation of a localized electron
state in the QPC [9, 11], other authors [10, 12, 32] have argued

that local spin polarization (i.e. moment formation) can arise
without the formation of such a state. All that is required in
the latter case is that a spin-dependent barrier should develop
in the QPC, giving rise to different spin-resolved densities.

With above considerations in mind, in figure 7, we
investigate the extent to which the spin-dependent barrier
structure noted in figure 6, gives rises to a local spin
polarization, P , within the QPC region to see to what extent
a local magnetic moment is formed. We define this quantity in
terms of the total local spin densities, nσ (x, y), as follows:

P =
∫ ∫

QPC
p(x, y) dx dy, where

p(x, y) =
[

n↓(x, y)− n↑(x, y)∫ ∫
QPC dudv

(
n↓(u, v)+ n↑(u, v)

)
]
. (13)

Once again, it should be noted that the densities in this
calculation represent the sum total for each spin obtained
by sending waves into the structure from both the left
and the right side of the QPC. Note that since spin-down
modes are favorably transmitted in our simulations, we have
chosen them as making the positive contribution to the above
function. As is evident from the P versus Vg plot, a non-
zero polarization is obtained at the lower gate voltages. At
higher gate voltages, where the spin-up and down potentials
converge, the polarization also vanishes. Interestingly, near the
positions of the 0.25G0 and 0.5G0 features (labeled (a) and
(b) respectively), local maximums in P occur, though nothing
noteworthy happens in this function when the G0 plateau is
reached at (c).

In the lower panel of figure 7, we examine what is
occurring inside the QPC at these three points. In the upper
tier of images, the spin-up density for waves incident from the
left is plotted for the three cases. As is apparent, the spin-up
electron waves never manage to penetrate all the way to the
right-hand side of the QPC. The second tier shows what occurs
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Figure 7. Top panel: the spin polarization (as defined in
equation (13)) as a function of gate voltage is plotted for a
one-dimensional density, n1D = 1.96 × 106 cm−1 (EF = 13.4 meV).
The conductance from figure 6 is overlaid. Bottom panel: the local
densities for spin-up and spin-down (the L indicates waves incident
from the left), and the local polarization (which includes
contributions from both left and right incident waves) is plotted as a
function of x and y in the QPC at the points marked (a), (b), and (c)
in the upper panel.

for spin-down. As is evident from the density, two spin-down
modes manage to penetrate well into the QPC in each case
(note the double peaks). At (a), one can see an exponential
tail in the spin-down density on the right-hand side, in keeping
with only a single mode being partially transmitted. At (b),
now one of the two spin-down modes is being fully transmitted.
At (c), both these modes are now fully transmitted. The effects
of the ‘shoulders’ in the potentials, discussed above, are not
particularly evident here. The role they play becomes more
clear in the lowest tier of images, where we plot p(x, y), the
local polarization obtained by considering waves incident from
both the left and the right. In each case, this function has a
multi-peaked region of high amplitude in the central region
of the QPC, meeting up with rippled tails extending to the
right and left. Where those tails begin is precisely where the
‘shoulders’ are in the potentials. At (a) and (b), p(x, y) has
four peaks in the central region. At (c), there has been a

merging effect, and four have become two. This is a result of
the fact that there two spin-down modes can penetrate entirely
through the QPC at that point.

While our results show that a local magnetic moment
does form at the center of the QPC in the regime where
the conductance is less than G0, it should be emphasized
here that in the present case one can not associate it with a
strongly localized spin state. The feature we have obtained
can be best described as weakly bound. That said, we again
note the differences between the results in figure 4, where
the comparatively weak ‘shouldered’ potentials and less well
defined local potential wells yielded an inflection point and a
hump in the conductance, and the plateaus evident here where
such potential features showed up more prominently.

In their numerical study, Starikov et al [32] performed
calculations for a similar structure to that considered here
and found evidence for spin-dependent-barrier formation,
reminiscent of that shown in figure 5, but no evidence for
the presence of quasi-bound states. In contrast, Hirose et al
[11] have argued that such localized states are responsible
for the Kondo-like characteristics observed in some QPC
experiments [7]. The recent work of Yoon et al [21],
which coupled experiment with theory, indicated robust spin
confinement in the system they studied. The suggestion of
the preceding results, which represent an intermediate position,
is that both scenarios may actually be realistic, but dependent
upon the specific conditions (i.e. electron density and confining
potential) in the QPC channel. With regards to the latter,
there are suggestions that there is a significant dependence
on the length of the QPC [6, 12], with the amount of spin
polarization increasing as the QPC is made longer. We have
seen such indications in our calculations. Indeed, some of
the simulations we have performed yielded true conductance
resonances (instead of just steps or inflection points) when
relatively long QPCs were studied. We intend to present this
work elsewhere.

4. Conclusions

In conclusion, as in recent experiments on QPCs, our SDFT
calculations yield additional structure besides the standard
conductance plateaus at integer values of G0. In the model we
investigated, these can be accounted for by the formation of
density and spin-dependent barriers in the QPC region which
can act as spin filters. Under the right circumstances, the
filtering effect is strong enough that two spin-down modes
can pass through the QPC before even one spin-up mode is
transmitted. The barriers also acquire additional ‘shoulder’
structure which can create a local potential well for one spin
species in the center of the QPC. In conjunction with this,
we found that a local spin moment was formed in the center,
though it could be best described as weakly bound for the
case presented here. The appearance of such ‘shoulders’
in the potentials at more negative gate voltages was found
to be a rather generic occurrence. However, a major effect
of changing n1D is to change the barrier heights and thus
their relative transparency. Thus, a barrier structure that
yielded a plateau in one instance could yield instead an
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inflection in the conductance in another. The formation of
spin-dependent barriers to electron transmission when a small
number of modes is transmitted through the QPC is a result
that other authors have also obtained [10, 12, 32, 36], though
the specific results were different, not surprising, given that
the model initial confining potentials were not the same and
other choices for parameters were employed. In this regard, it
should be noted that significant differences have been observed
experimentally when QPCs of different shapes were directly
compared [37].

Importantly, there is still little consensus on the physical
mechanism that breaks symmetry and lifts the spin degeneracy
in the channel. In numerical calculations, the spin-symmetry is
artificially broken, in our case by introducing a weak Zeeman
splitting (∼10−6 eV) that is turned off after the first few
iterations. Others have made use of similar approaches, but
in experiment some physical mechanism should be responsible
for the appearance of the spin-dependent barriers. One
possibility is the exchange energy cost associated with electron
occupation in the QPC channel, while another source may
be a Rashba mechanism. While the Rashba effect does not
normally give rise to a bulk spin polarization [38], its effect as a
perturbation may be sufficient to induce the required symmetry
breaking in the QPC. However, some [4] have disputed the
possibility of such an effect, and this is clearly an issue
requiring further careful study. We currently are in the process
of doing QPC simulations that incorporate the Rashba effect.
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